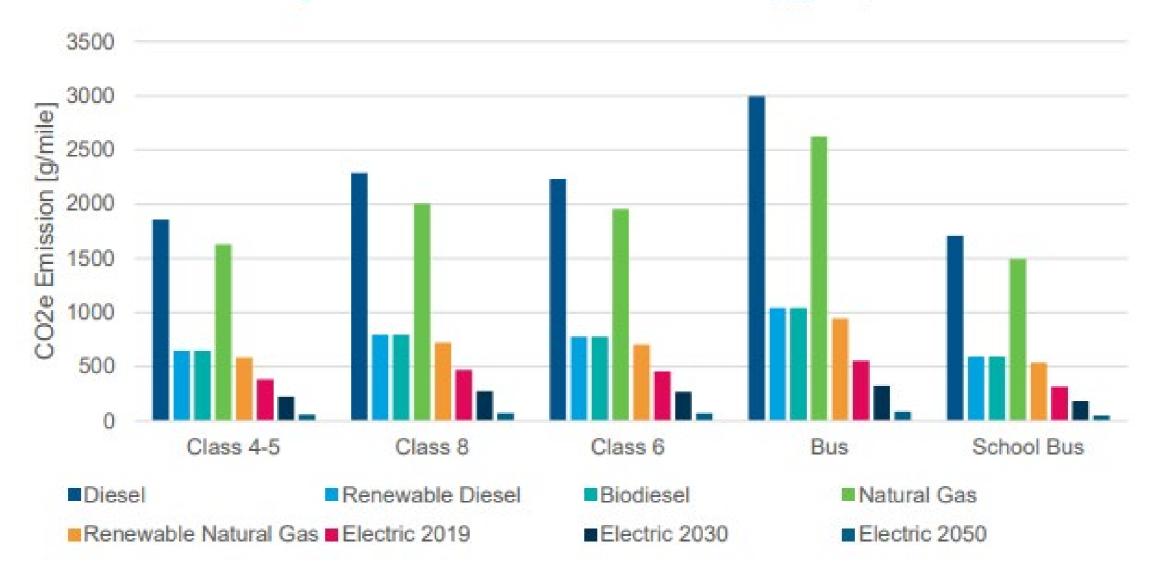

UTILITIES ROLE TO SUPPORT M&HDV ELECTRIFICATION IN NEW JERSEY

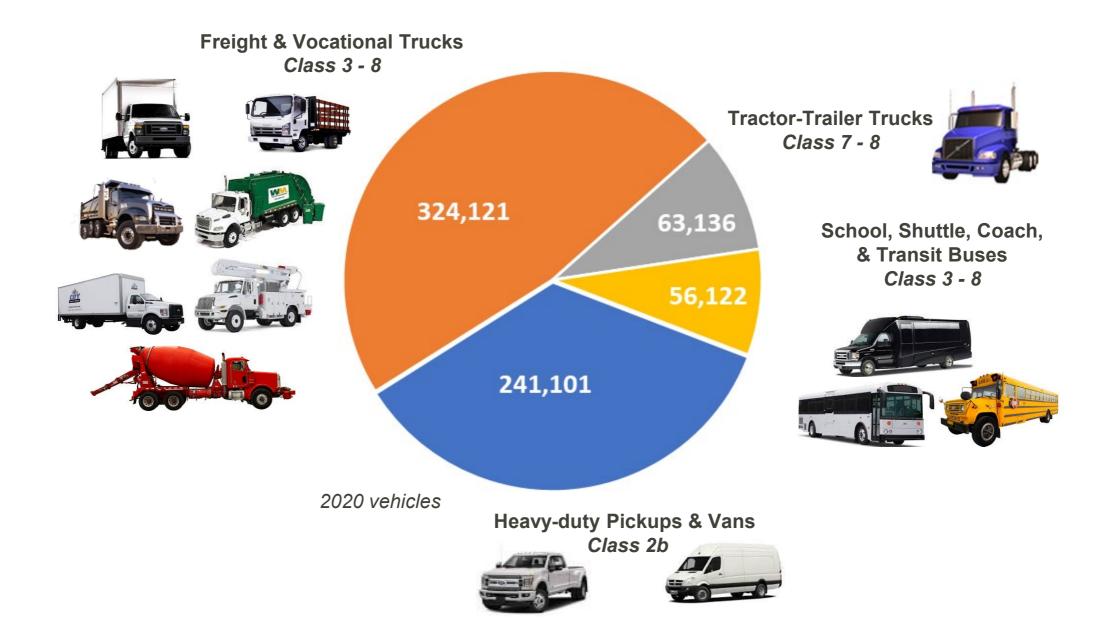

KATHY HARRIS August 24, 2021

Why Is Transportation Electrification Important?

- Transportation Accounts for 41% of GHG Emission s in NJ
- MHDVs are responsible for
 - 7.6 million metric tons of GHG emissions each y ear (20% of all transportation)
 - 44% NOx pollution from the transportation sector
 - 39% of particulate matter from the transportation sector
- Highly concentrated emissions in urban areas, low -income communities and communities of color

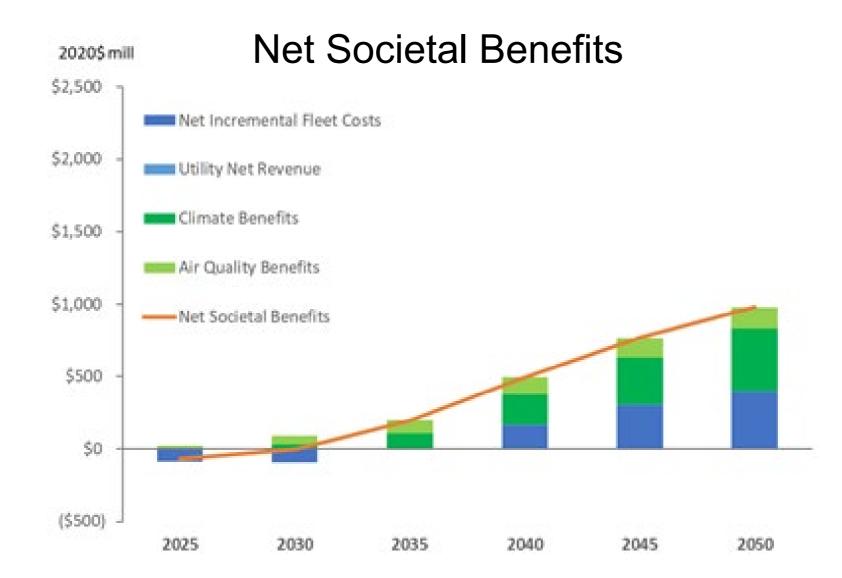
Air Quality Benefits from Medium and Heavy-Duty EVs

Figure II-3. GHG Emission Factor Summary (g/mile)


Comparison of Medium and Heavy-Duty Technologies in California, ICF, 2019.

Additional Benefits of M&HDV Electrification

- Lower Total Cost of Ownership
 - Rebates and incentives available to help reduce delta
 - More predictable and consistent fueling prices
- Provides environmental, health and air quality benefits
- Ensures that all New Jerseayans have access to clean transportation
- Cleans up trucks and buses that drive through communities (especially those by ports, highways, and warehouses)


Medium- and Heavy-Duty Vehicles in NJ

Benefits of M&HDV Electrification

- Through 2050, clean truck rules will:
 - Save New Jerseyans 228 premature deaths and 135,770 illnesses

- Reduce GHG emissions by 18.9 million metric tons
- Reduce NOx emissions by 82 percent

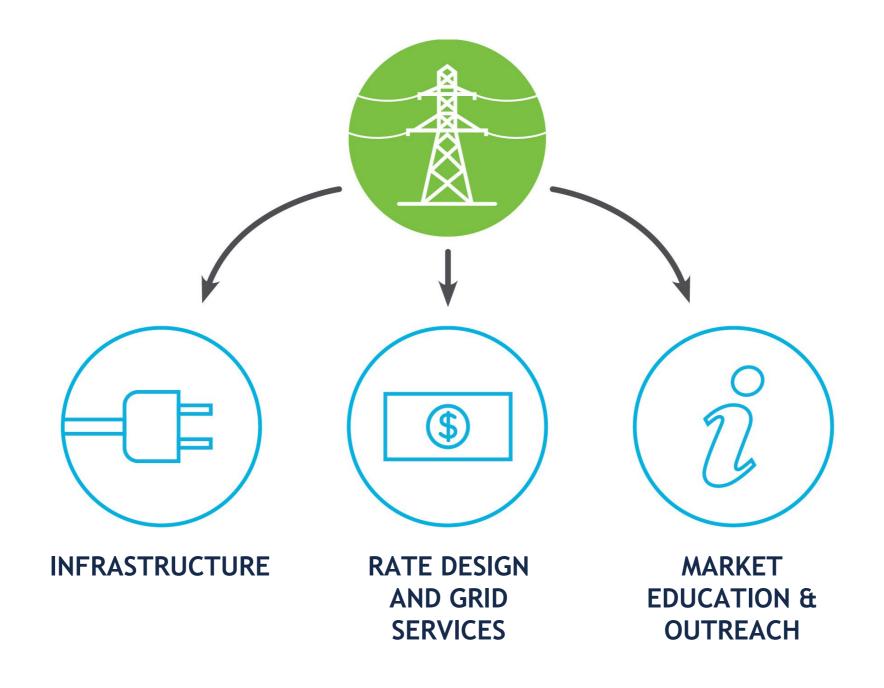
State Programs and Policies

NJ 80x50 goal through the Global Warming Response Act

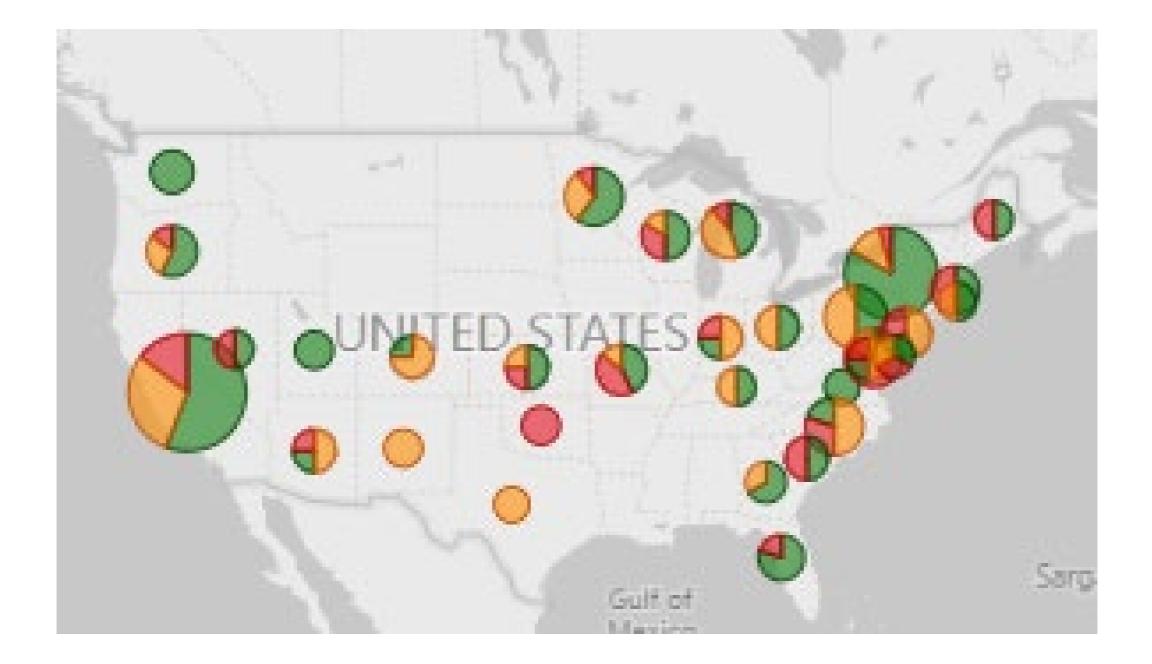
NJ Zero-Emission Vehicle Incentive Program

Medium- and Heavy-Duty Memorandum of Understanding

• Goal of 100% electric MHDV sales by 2050

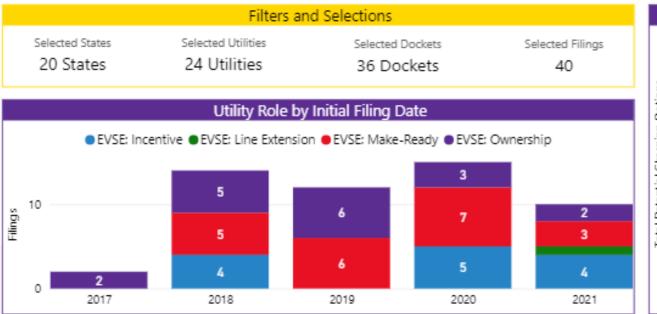

EV Law

 Requires the installation of 200 public fast charging stations (400 ports) through 2025

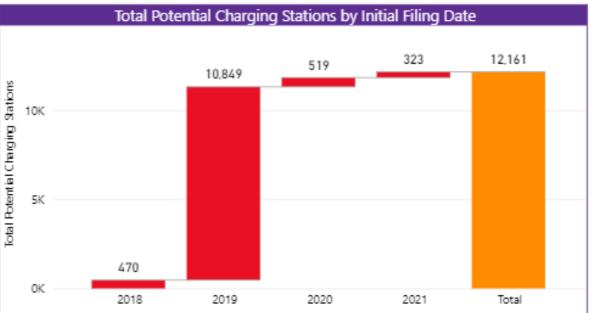

Potential for ACT/ HDO Rules

- Increases the number of electric M&HDV on the road
- Cleans up the vehicles that can't yet electrify

Utility Actions to Accelerate Transportation Electrification



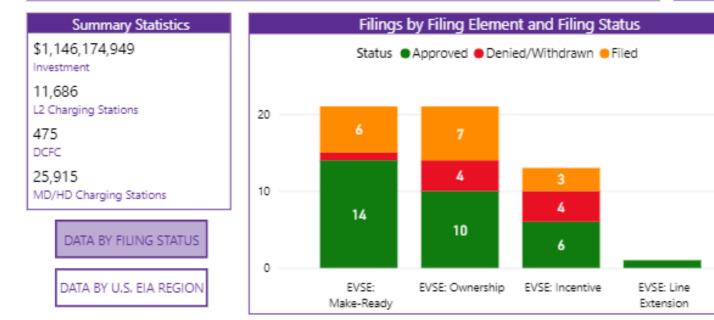
Utility Transportation Electrification Investments

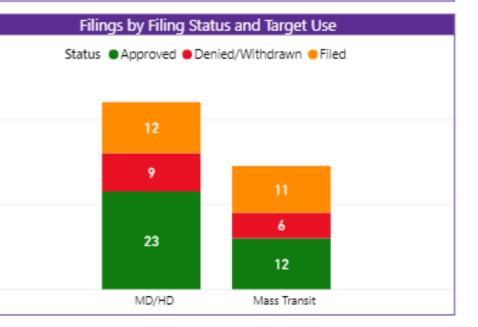


Utility M&HDV Investments

This dashboard contains details on filings related to EV charging.

EV Charging




40

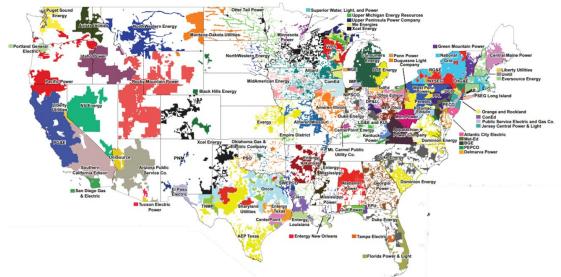
20

0

Seset to Default | ? HELP | \leftarrow PREVIOUS | NEXT \rightarrow

THANK YOU

Kathy Harris kharris@nrdc.org


Supporting Fleet Electrification Customers

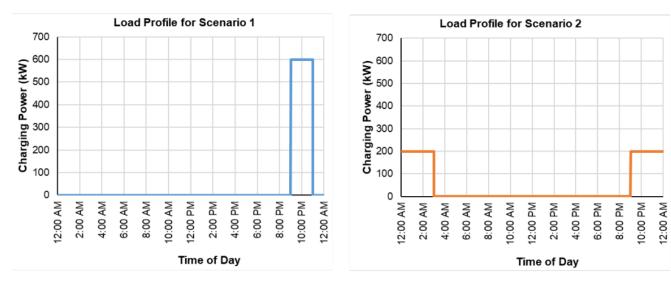
Medium- and Heavy-Duty Ecosystem Panel Kellen Schefter, Edison Electric Institute <u>kschefter@eei.org</u> Tuesday, August 24, 2021

About Edison Electric Institute (EEI)

- Organized in 1933, EEI represents all U.S. investor-owned electric companies.
- EEI members provide electricity for 220 million Americans and support more than 7 million jobs in communities across the U.S.
- EEI has more than 65 international electric companies and hundreds of industry suppliers and related organizations.
- EEI provides public policy leadership, strategic business intelligence, and essential conferences and forums.

EEI Member Company Service Territory

Different Fleet EV Use Cases Require Different Charging Solutions

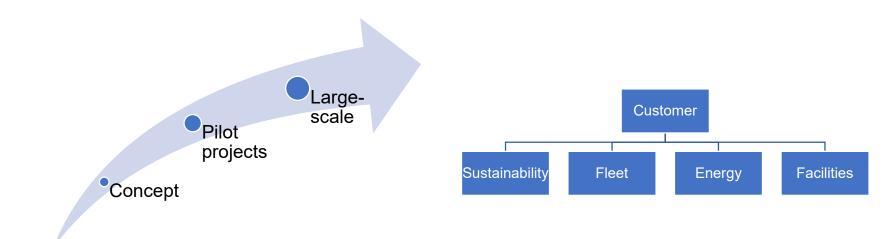

Source: Amazon

Last-mile delivery Package delivery Overnight, depot charging

Source: Penske

Short-haul freight Grocery Charging between shifts/routes

Scenario 1	Scenario 2
4 EV trucks charging at 150 kW	4 EV trucks charging at 50 kW
Charge for 2 hours (9 p.m. to 11 p.m.)	Charge for 6 hours (9 p.m. to 3 a.m.)
Peak demand: 600 kW	Peak demand: 200 kW
Daily energy delivered: 1,200 kWh	Daily energy delivered: 1,200 kWh
Monthly electric bill: \$8,905	Monthly electric bill: \$4,105
Effective electric cost: \$0.37/kWh	Effective electric cost: \$0.17/kWh



Preparing to Plug In Your Fleet

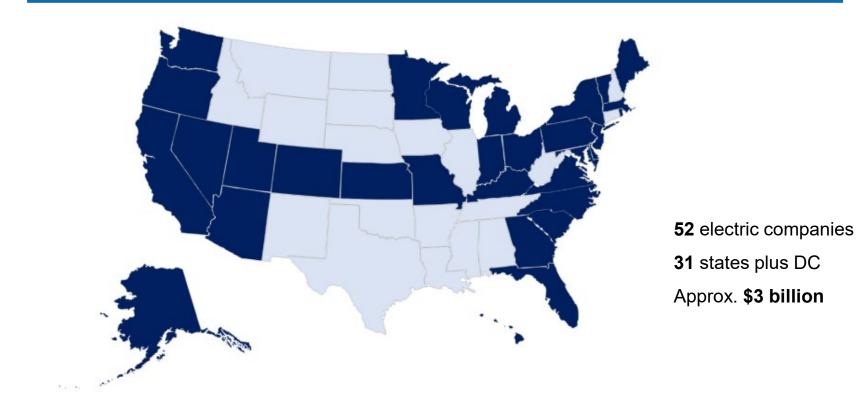
Electric bill depends on charging strategy

https://www.eei.org/issuesandpolicy/electrictransportation/Documents/PreparingToPlugInYourFleet_FINAL_2019.pdf

Electric Company-Customer Engagement

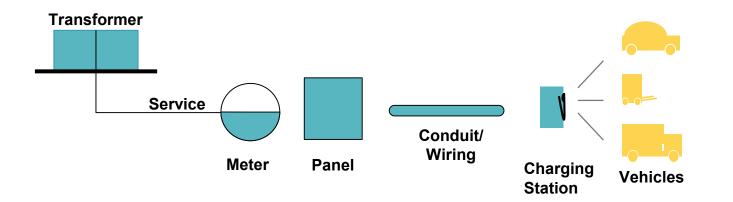
- **Engage early:** electric service upgrades for large-scale site may take 18-24 months
- Strategic partnership: understand the customer's power needs and long-term plans
- Communication is key: customers need to work across silos and leverage account managers as the single point of contact

Electric Company Support for Fleet Customers


Business As Usual

- Power
- Interconnection
- Rates

Customer Programs


- Advisory Services
- EV Charging Infrastructure
- EV Charging Rates

Many States have Approved Electric Transportation Programs

https://www.eei.org/issuesandpolicy/electrictransportation/Documents/FINAL_ET%20Biannual%20State%20Regulatory%20Update_February2021.pdf

EV Charging Infrastructure Programs

Service Connection	Supply Infrastructure	Charging Equipment	
Electric company	Customer	Customer	Incentive-based
Electric company	Electric company	Customer	Utility-constructe
Electric company	Electric company	Electric company	Utility-owned/ope

tility-constructed make-ready

tility-owned/operated

8/24/2021

Medium- and Heavy-Duty Ecosystem

New Jersey BPU Stakeholder Meeting

About Greenlots

Together with Shell and our partners, Greenlots is powering the transformation to electric mobility to create a more sustainable future. Our industry-leading software and services equip drivers, site hosts and network operators to efficiently deploy, manage, and leverage EV charging infrastructure at scale.

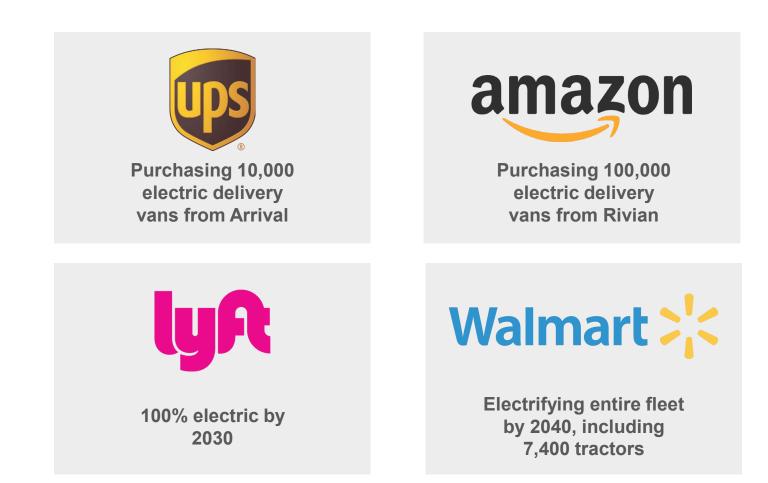
We provide what our customers need: expertise, solutions, and support to transition to electric and flexible solutions that deliver economically effective, reliable charging at scale.

Founded in **2008** with over a decade of experience

Headquartered in **Los Angeles,** California

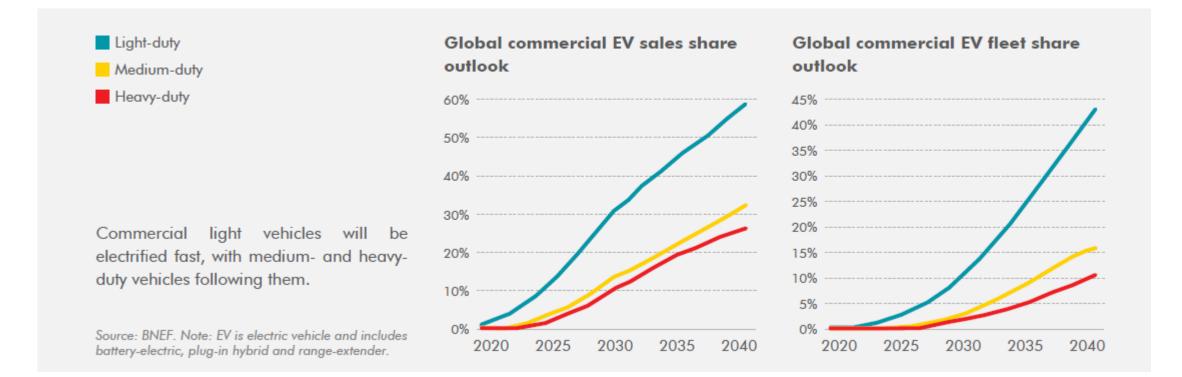
Acquired by Shell Renewables and Energy Solutions in January 2019

Global footprint with offices throughout the US and in Canada, India, Singapore, and Southeast Asia


Over **170 Employees** and contractors worldwide

Working with utilities, cities, automakers, fleet and retail customers across the US and the world

Major corporations are electrifying their fleets


Major transit agencies are electrifying their fleets

San Joaquin RTD Fully ZEB by 2025	Los Angeles Fully electric by 2030	CALIFORNIA AIR RESOURCES BOARD California Fully ZEB by 2040	Chicago Fully electric by 2040	Stm Montreal Fully electric by 2040
	MTA	King County METRO		Metro
New Jersey Fully ZEB by 2040	New York Clty Fully electric by 2040	Seattle Fully ZEB by 2040	Toronto Fully ZEB by 2045	Washington, D.C. Fully ZEB by 2045

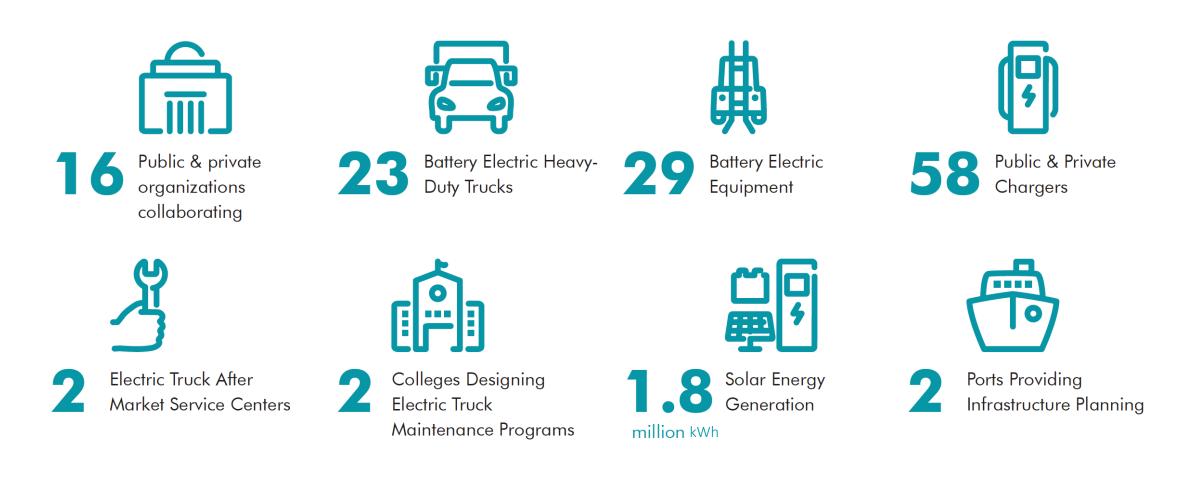
Commercial EVs are projected to grow significantly

There are **over 1 million commercial EVs** on the roads globally including buses, delivery vans and trucks. Corporate fleet commitments, the rise of e-commerce, urban air quality concerns and growing regulatory pressure will keep the commercial EV market growing in the years ahead.

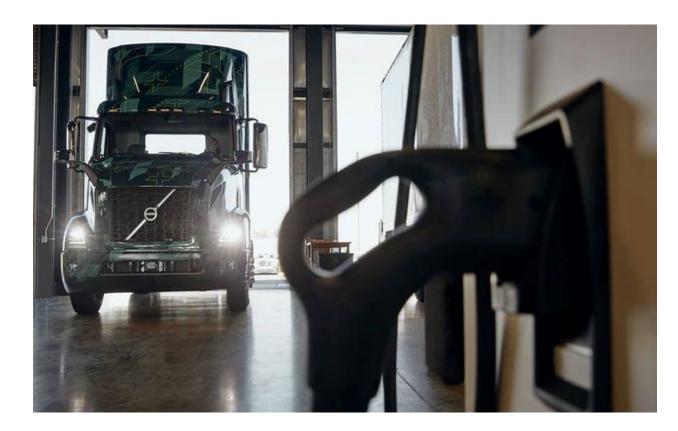
Data source: Electric Vehicle Outlook 2021, BloombergNEF

Main themes

-


- Think holistically
- Plan: plan ahead, and plan for scale
- Leverage software

Case Study: Volvo LIGHTS


Case Study: Volvo LIGHTS

Confidential

Volvo LIGHTS: Innovative charging solutions

The first heavy-duty fleet charging project to demonstrate the viability of **Class 8 battery electric trucks** and equipment **3** 150 kW DC Fast Chargers across three trucking facilities

6 50 kW DC Fast Chargers across three trucking facilities

15 Level 2 stations for light-duty vehicles

50 Electric forklift

chargers for inwarehouse operations

Lessons Learned:

- Many stakeholders: site host fleet, utility, auto OEM (Volvo), hardware manufacturer – integrated PM approach is critical
- Although project is subsidized, it's important to start to analyze path to cost parity with diesel

Considerations

Think Holistically

- Electrification is more than just buying vehicles and chargers
- Rethinking operations can yield efficiencies and savings
- Resilience can entail on-site energy solutions
- Reliability requires end-to-end testing, validation and support

When Planning, Plan Ahead and for Scale

- Plan ahead for electrification at scale
- Energy management is a key operational element
- The utility has a key role throughout the process
- Public funding and incentives can make the difference
- Technology interoperability supports future-proofing and scalability
- Coordinate with local authority having jurisdiction
- Budget plenty of time to allow for unexpected challenges and delays

Leverage software-based EV charging to manage load

Smart charging enables "set it and forget it" load optimization

EV Charging Load Sharing

Benefit:

Eliminate or reduce the need for infrastructure upgrades and install more EV chargers than the site's transformer capacity would allow

Working mechanism:

Automatic sharing of available power between EV chargers when charging load is expected to go beyond its limit

EV Charging Load Scheduling

Benefit:

Reduce electricity costs by preventing or curtailing charging sessions during hours with high electricity costs

Working mechanism:

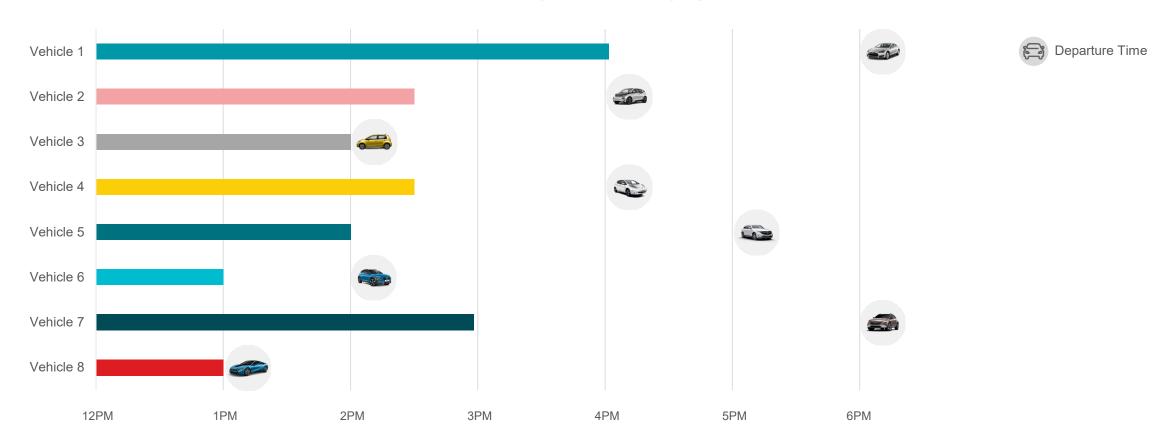
Based on utility tariffs, site hosts can manually set the maximum site load for specific hours during a day when the cost of electricity is high

Integrated DER & Storage

Benefit:

Reduce utility bills by pulling energy from the Distributed energy resources (DER), rather than the grid during peak demand charges

Working mechanism:


Integrate DER, such as energy storage or solar PV, into EV charging systems

Example: Non-optimized Fleet Charging

Vehicles start charging as soon as they are connected. Extended periods where vehicles are connected but are not charging

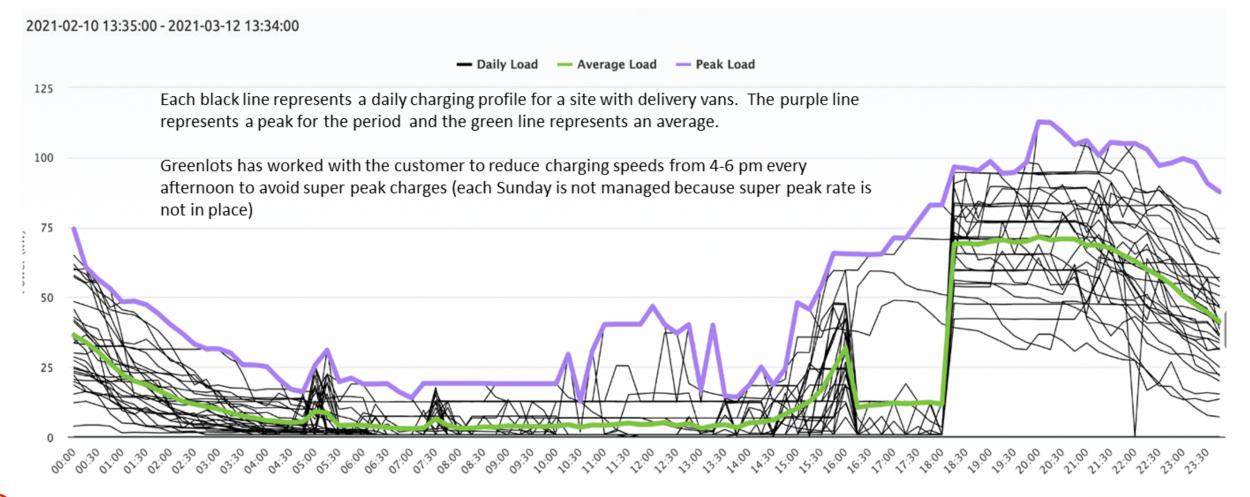
Unmanaged Fleet Charging

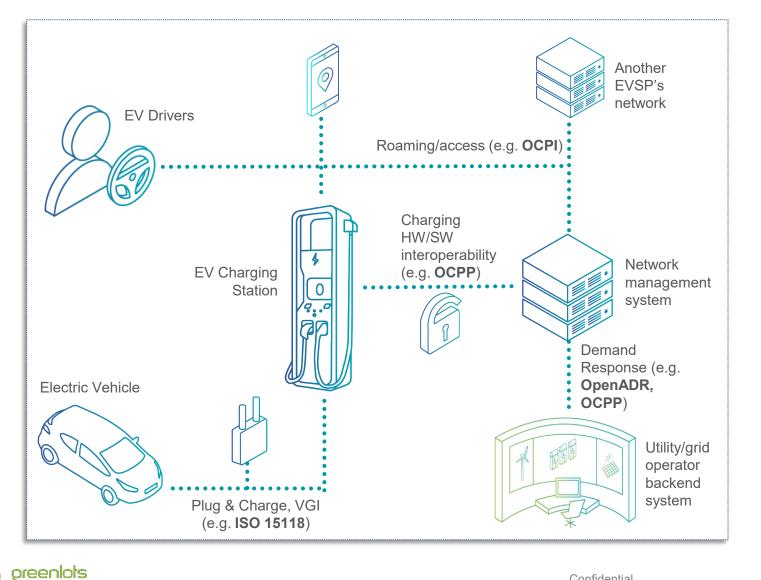
Confidential

Example: Optimized Fleet Smart Charging

Vehicles don't start charging as soon as they are connected. The load limit and the schedule will determine when the vehicle is to be charged.

2 Co Departure Time Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4 Vehicle 5 Vehicle 6 Vehicle 7 Vehicle 8 12PM 1PM 2PM 3PM 4PM 5PM 6PM


Optimized Fleet Smart Charging Schedule


Case Study: Smart Charge Management

Minimizing charging speeds when utility rates are higher – or to avoid peak rates – while ensuring that fleet vehicles can meet their delivery obligations

Open Standards and Protocols Enable a Smart, Flexible & Resilient EV Charging Ecosystem

Confidential

OCPP & Open Standards

- Open Charge Point Protocol (OCPP) allows communication between charging stations, a central system, and utilities' IT infrastructure using a single, open and royalty-free protocol
- Required of all Electrify America vendors and increasingly required in utility procurement programs
- Provides foundational capability to connect any central system with any charging station, regardless of the vendor
- Stations work after switching network provider; system works after switching charging stationsno vendor lock-in
- Open standards and protocols more broadly facilitate a seamless driver experience, minimize infrastructure investment risks, support ongoing competition and choice for customers through hardware and software switching capability, and allow for the efficient integration of EVs into the electric grid

Thank you!

Josh Cohen

Director, Policy

jcohen@greenlots.com

410-989-8121

MD/HD Electrification Policies in California

Kinshuk Chatterjee August 24, 2021

Key State Agencies

- California Air Resources Board (CARB): Oversees efforts to reduce air pollution and address climate change.
- deploy clean energy and transportation technologies.

California Public Utilities Commission (CPUC): Regulates the electrification programs.

California Energy Commission (CEC): Funds efforts to research and

investor-owned utilities (IOUs) and authorizes IOUs' transportation

Key MD/HD Electrification Policies

Executive Orders

Legislation

Regulations

- Advanced Clean Fleets: Requires select truck fleets to convert to ZEV vehicles.
- **Innovative Clean Transit Rule:** Requires transit fleets to convert to ZEV vehicles.
- **ZE Airport Shuttle Regulation:** Requires airport shuttle operators to convert to ZEVs.

N-79-20 (2020): 100% of new light-duty vehicles sales must be EVs by 2035; 100% of drayage and off-road vehicles must be ZEVs by 2035; all other MD/HD vehicles must be ZEVs by 2045. **B-48-18** (2018): Deploy 250,000 EV chargers by 2025 and 5 million ZEVs by 2030.

SB 350 (2015): Established a goal of reducing GHG emissions 40% by 2030 (relative to 1990); Authorizes utilities to propose transportation electrification applications with the CPUC. AB 617 (2017): Directs CARB to support communities most impacted by air pollution.

Advanced Clean Trucks: Require manufacturers to offer increasing numbers of ZEV trucks.

Advanced Clean Trucks

- Advanced Clean Trucks (ACT) requires truck manufacturers to sell an increasing percentage of zero-emission trucks beginning in 2024.
 - By 2035, zero-emission trucks would need to comprise:
 - 55% of Class 2b-3 truck sales;
 - 75% of Class 4-8 truck sales; and
 - 40% of truck tractor sales.
 - Reporting requirements Large employers and fleet operators are required to report information about shipments, shuttle services, and fleet operations.
 - 15 states and D.C. have proposed adopting the ACT.

- Advanced Clean Fleets (ACF) institutes ZEV purchasing requirements for all public fleets, drayage fleets, and Federal or other high priority private fleets with 50 vehicles or more.
 - Deadlines:
 - ACF is scheduled for CARB consideration in December 2021.

Advanced Clean Fleets

 From 2024-2026, 50% of new truck purchases must be ZEVs. • From 2027 onward, 100% of new purchases must be ZEVs.

ICT and ZE Airport Shuttles

- Innovative Clean Transit Rule (ICT): Requires transit fleets to convert to zero emission buses (ZEBs).
 - Institutes different requirements for small and large transit fleets. • By 2029, 100% of all bus purchases must be ZEBs.
- Zero-Emission Airport Shuttle Regulation: Requires shuttle operators in select airports to transition to ZEVs.
 - Timeline:
 - 33% ZEV penetration by 2027.
 - 66% ZEV penetration by 2031.
 - 100% ZEV penetration by 2035.

California MD/HD Programs

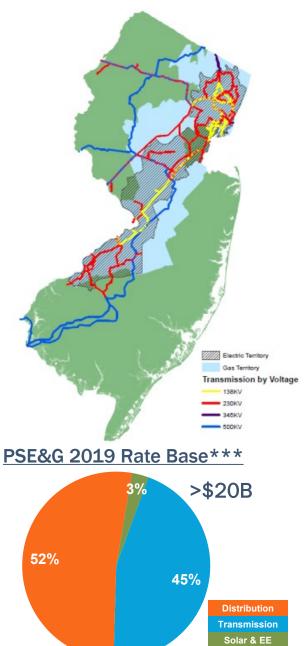
- Hybrid and Zero-Emission Truck and Bus Voucher Incentive Project (HVIP): Funds point-of-sale vouchers for MD/HD vehicles. • Allocated approximately \$160 million for 2021.
- Energy Infrastructure Incentives for ZE Commercial Vehicles (EnergIIZE): Funds MD/HD charging/refueling infrastructure. • Allocated \$50 million in initial funding.

California MD/HD Pilots

- ZE Drayage Truck and Infrastructure Pilot \$44 million, joint agency pilot to deploy 50 Class 8 drayage trucks and supporting infrastructure to electrify port and intermodal travel.
- Energy Commission Pilots Proposed pilots seek to address new technology applications, including bidirectionality, DER integration, and VGI functionality.
- Utility Pilots CPUC has authorized numerous utility MD/HD pilots, including fleet demonstrations, make-ready infrastructure pilots, and port electrification initiatives.

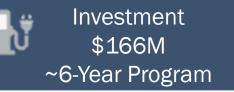
Questions?

Medium and Heavy Duty Foosystem **Dawn Neville** Manager Electric Transportation **Renewables & Energy Solutions** August 24, 2021



We have the **energy** to make things work ... for you.

PSE&G – New Jersey's largest:


- Electric and Gas Distribution utility
- Transmission business
- Leading investor in renewables and energy efficiency
- Appliance service provider

	Electric	Gas
Customers 5-Year Annual Customer Growth*	2.3 Million 0.8%	1.9 Million 0.7%
2020 Electric and Gas Sales	39,666 GWh	2,370M Therms**
Sales Mix (2020)		
Residential	35%	60%
Commercial	56%	36%
Industrial	9%	4%

CEF: Electric Vehicle Program

Development of smart charging infrastructure to facilitate EV adoption across a broad range of customers and segments

Subprograms*

- 1. Residential Smart Charging
- 2. Level 2 Mixed-Use Charging
- 3. Public DC Fast Charging

Environmental Benefits		Other Benefits			
R COO	000	an electric mile is 70% cleaner than an average mile fueled by gasoline	270 direct clean energy jobs	Mitigation of EV market barriers	
STATION D		14 million metric tons of CO ₂ avoided through 2035	Advances NJ clean energy and EV goals	& reduction in range anxiety	

*A 4th subprogram, **Vehicle Innovation**, for \$45M investment in medium/heavy duty vehicles (MHDVs), is held in abeyance pending a MHDV stakeholder process

Why is a Utility Role Appropriate?

- Utility involvement is appropriate because
 - Meeting strategic state goals needs cohesive involvement from all stakeholders
 - Utilities have trusted relationships already established with MHD customers
 - The utility has a regulatory obligation to help control costs
 - Existing utility programs for LDVs will help optimize cost effectiveness of developing MHD programs

- Electrification benefits will extend to
 - PSE&G customers
 - Local communities
 - Those traveling through the state
 - Those residing in neighborhoods most impacted by air pollutants

Why is a Utility Role Necessary?

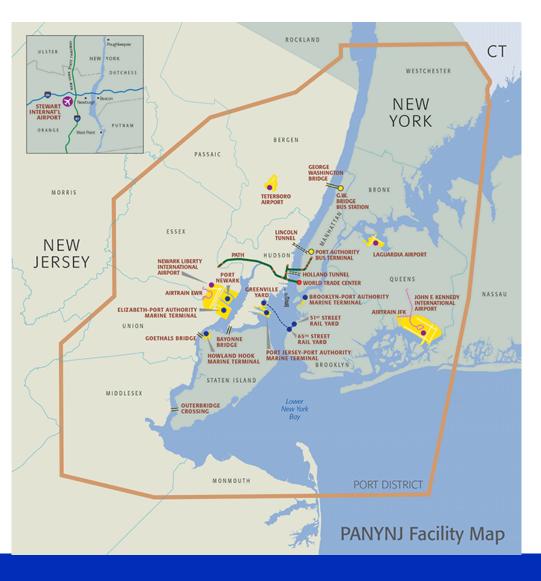
- Utility programs are **necessary** to attract private investment
 - Encourage private investment in the NJ market with improved project economics
 - Remove/resolve grid integration barriers to infrastructure investment
 - Utility funding in coordination with other funding (e.g. federal funds) will maximize adoption
- Coordinated utility involvement is **necessary** for managing load growth
 - Very high power charging of MHDVs
 - Concentrated loads associated with fleets
 - Long lead time for building new substations
- Utility involvement also helps meet other goals
 - Ensure safety, reliability, and cyber-security
 - Encourage equitable market development
 - Collect and analyze charging data for regulatory analysis, load forecasting, rate considerations, etc.
 - Optimize grid impacts to help control costs for all customers

Other Utility Considerations

- Rate design will be critical for encouraging fleet electrification
 - Electrification "fuel" costs will have a direct impact on fleet operational costs
 - Fleet customers will need to understand demand charges to optimize "fuel" costs
 - Only utilities can address rate design issues
 - Specialized rates will only be effective if lost revenues are captured from the full customer base
- Other general considerations
 - Equity goals
 - Strategic electrification opportunities (e.g. NJ Transit)
 - MHD vehicles are in many market segments that do not fit into the 'One Size Fits All' category
 - The policy developed through this stakeholder process will need the flexibility to adjust over time to be relevant during the multiple years of this program as the market and technology change

How to Encourage MHD Adoption

- Offer low cost make-ready solutions
 - Make-ready is especially costly for MHDV charging infrastructure
 - Make-ready infrastructure is a natural extension of the utility distribution infrastructure
 - Make-ready build out is a key aspect of grid reinforcement cost control
 - Utility investment can be capitalized long term, thus reducing customer impact
- Fleet owners will rely on many factors when deciding to adopt electrification
 - Total cost of ownership and cost per mile calculations
 - Clearly defined and understandable benefits of electrification
 - Utility support to optimize charging design and load factors
 - Integrated Distributed Energy Resources (DERs), such as batteries, to support peak load conditions and provide resiliency
- Solutions are needed for small fleets (2 vehicle minimum)
 - Small businesses need utility support to participate and benefit from these programs
 - Overburdened communities have a disproportionate volume of small business needing support


PORT AUTHORITY NY NJ

Medium & Heavy-Duty Ecosystem

Port Drayage Trucks: Current State & Challenges

AIR LAND RAIL SEA

Who We Are & What We Control

Port Environmental Initiatives

Our Sustainability Goals

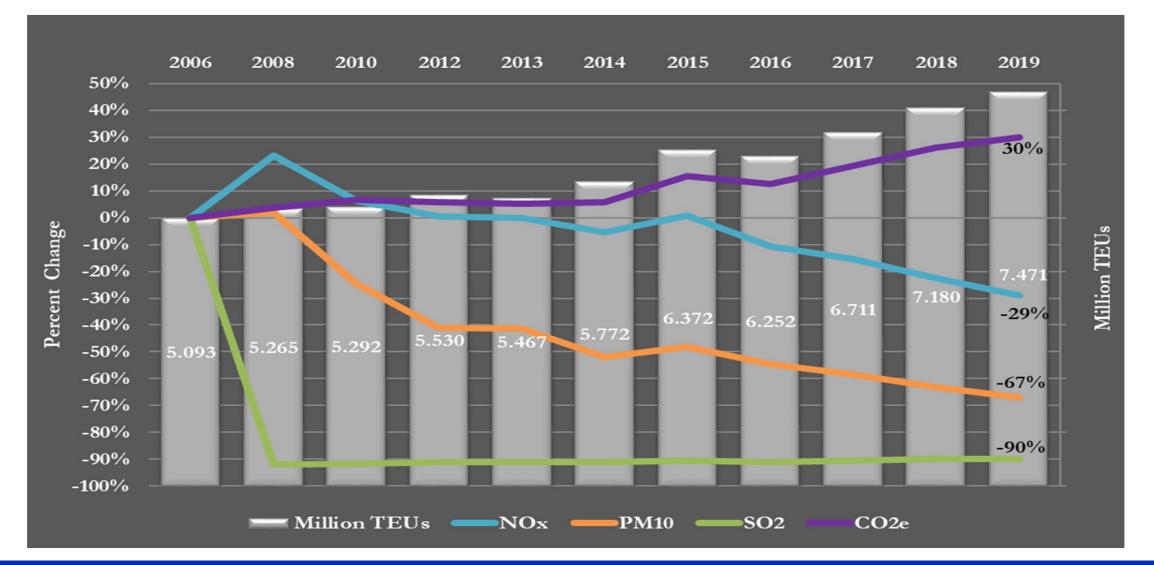
Agency-Wide Sustainability Goals

- 35% reduction in Port Authority greenhouse gas emissions by 2025
- 80% reduction in overall greenhouse gas emissions by 2050

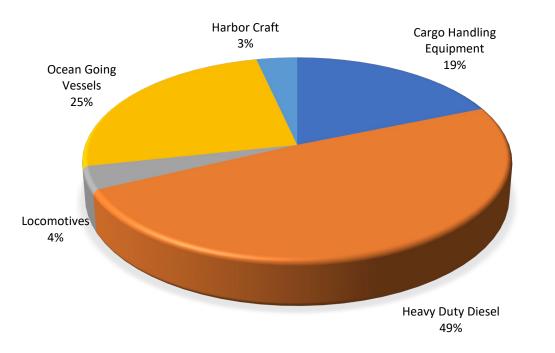
Port Emission Reduction Goals

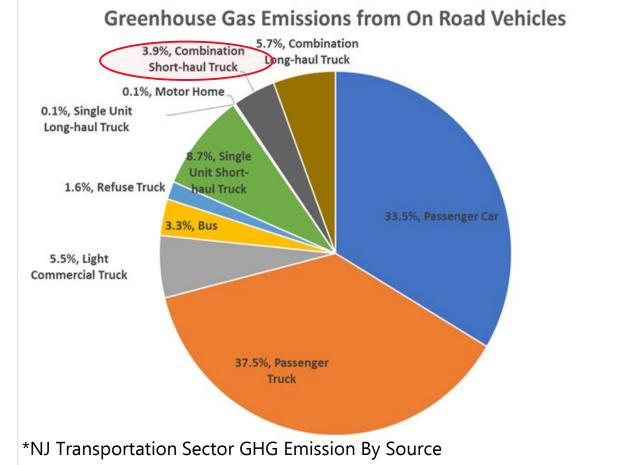
- Criteria Air Pollutants: 3% annual average decrease
- Greenhouse gas emissions: 5% annual average decrease

Truck Replacement Program


Cargo Handing Equipment

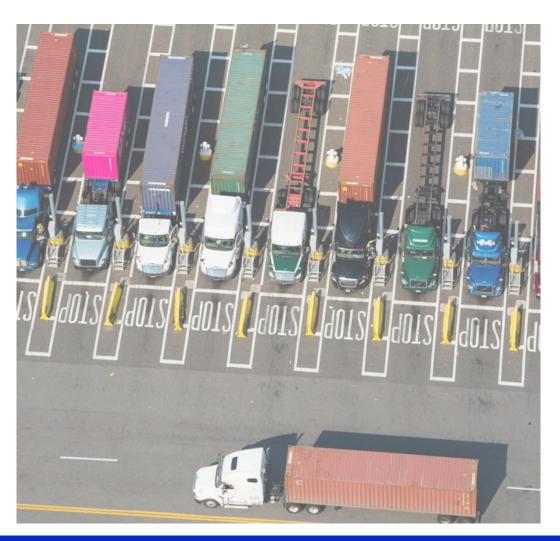
Clean Vessel Incentive Program


Heavy Duty Vehicle Emissions Relative to TEU Throughput



GHG Emissions

PORT GHG EMISSIONS BY SOURCE



Infrastructure Challenges:

- Current State of the Grid: substations, access points and future demand points.
- Lack of Standards: electrical outlets, charging and fueling and connecting devices.
- Lack of Charging Stations: in New Jersey and the broader region.

Full Scale Commercial Availability:

Make	Model	Powertrain	Availability	Max Range (miles)	Battery Capacity (kWh)	Mi	in Price	Ma	ax Price
BYD	8TT	Battery	Available	167	409	\$	250,000	\$	300,000
Freightliner									
(Diamler)	eCascadia	Battery	Late 2021	220	475				
Hyundai	HDC-6 Neptune	Hydrogen	2024		NA				
Kenworth	T680 (H2 -	Hydrogen							
(Paccar)	Toyota)	retrofit	Demo	300	NA				
Kenworth									
(Paccar)	T680E	Battery	Demo	150					
Lion	Lion8	Battery	Demo	250	588	\$	250,000	\$	400,000
Nikola	Two	Hydrogen	2023	750	250				
Peterbilt (Paccar)	579EV	Battery	2021	200	420				
Sea Electric	Acco EV	Battery	Demo	155	216				
Tesla	Semi	Battery	2022	500	500	\$	150,000	\$	180,000
Volvo Trucks	VNR	Battery	Demo 2021	150	264				
Xos	ET-One	Battery	Demo	150		\$	180,000	\$	250,000

Operational Challenges:

- Rate & Duration of Charging: effected by design of the charging station & the state of the batteries.
- Weight of the Batteries: likely to impact allowable payload to meet max GVW of 80,000 lbs.
- **Range Limit**: optimal range before needing a recharge is about 100 miles (dependent on temperature, payload, speed, battery condition)
- Electricity Cost: charging cost needs to be on par with the cost of diesel.

Affordability

- > 19,000 trucks registered to service the Port.
- 9,000 unique trucks call the Port each month.
- Approximately 80% of the trucks are owned by Independent Owner Operators (IOOs).
- IOO's typically purchase used trucks
- Class 8 ZE (battery electric) trucks with a charger are expected to cost around \$470,000

**** 5-10 times more than a used diesel trucks.

- Hydrogen fueled trucks are expected to be more expensive than a ZEV.
- Limited grant opportunities due to Buy America requirements.

IOO
IMC

LINC
LIN

\$- \$100,000.00 \$200,000.00 \$300,000.00 \$400,000.00

Next Steps

- Drayage Truck Study to assess feasibility of electrification: currently underway in coordination with NREL
- Data collection for Electrical & Communications Infrastructure Assessment.

What is needed:

- Infrastructure Grants
- Regulation & Standardization including Heavy Duty Inspection & Maintenance Regulation, and Emission Standards
- Funding for Pilot Projects & Studies

Bethann Rooney Deputy Port Director Tel: 212-435-4215 eMail: berooney@panyni.gov

Thank You!

🕞 @panynj 🕑 @panynj 🞯 @panynj www.panynj.gov



New Jersey Board of Public Utilities I/M/O Medium & Heavy Duty Electric Vehicle Straw Proposal MHD Ecosystem Stakeholder Panel

Presentation of James Sherman, V.P. & Chief Operating Officer Climate Change Mitigation Technologies LLC August 24, 2021

Red Hook Container Terminal Ribbon-Cutting

10 BYD Heavy-Duty Zero Emission Terminal Tractors

Red Hook Charging Infrastructure

BYD On-Road Day Cab Tractor

- Third Generation Technology
- Suitable for Port Dray trucking
- Standard Model (422 kwh) has working range of 125 miles with potential range of 200 miles
- Extended Range Model (566kwh) has working range of 165 miles and potential range of 250 miles
- Top Speed is 74 mph
- Full ADAS

BYD Garbage Trucks

- Class 6 (10yd3 capacity)
- Class 8 (25yd3 capacity)
- Rear-loaders
- Side-loaders
- Roll-off Container
- 22 class 8 garbage trucks on order and/or in delivery

Lightning eMotors Medium Duty LMD Trucks & Shuttle Buses

Van Con V2G Type A Zero Emission School Bus

- Van Con Inc., Middlesex NJ
- Since 1973
- First and only V2G Type A school bus in nation
- Body is made in NJ
- Lightning eMotors electric drivetrain and batteries
- 6 buses on order

Emerging Business Models & Role of Private Companies, the Board, and the Utilities

- Role of Private Industry
- Emerging Business Models
 - Energy and Charging as a Service (ECaaS)
 - Transportation as a Service (TaaS)
- Companies
 - Nuvve
 - Amply
 - Greenlots
 - Viridity
 - Others

- Role of Board and Utilities
- NJBPU: Incentivize V2G
- Utilities:
 - Prioritization of MHD power supply upgrades and V2G interconnections
 - Timely compliance with FERC Order 2222

Thank You

James Sherman Vice-President & Chief Operating Officer Climate Change Mitigation Technologies LLC 973-303-2106 jsherman@ccmtdg.com